
A Trainable Text Summarizer Employing
Statistical and Linguistic Features

Joel Larocca Neto Alex A. Freitas Celso A. A. Kaestner

Pontifical Catholic University of Paraná
Rua Imaculada Conceição, 1155

80.215-901 Curitiba – PR - BRAZIL
{ joel, alex, kaestner} @ppgia.pucpr.br

Paper ID: P

Keywords: Text Summarization, Trainable Summarizers, Text-mining, Information
Retrieval, Machine Learning.

Contact Author: Celso A. A. Kaestner

Under consideration for other conferences (specify)? No.

Abstract

In this work we address the automatic summarization task. According to the literature,
extractive-summary generation depends basically on heuristics; however, there are few
indicatives of how to select the relevant features. We wil l present a trainable
summarization procedure which employs linguistic and statistical features, extracted
directly and automatically from the original text. Computational results obtained with
the application of the proposed summarizer to some well known text databases are
presented, and we compare these results to some baseline summarization procedures.

A Trainable Text Summarizer Employing
Statistical and Linguistic Features

Paper-ID: P

Abstract

In this work we address the automatic
summarization task. According to the
literature, extractive-summary
generation depends basically on
heuristics; however, there are few
indicatives of how to select the
relevant features. We will present a
trainable summarization procedure
which employs linguistic and
statistical features, extracted directly
and automatically from the original
text. Computational results obtained
with the application of the proposed
summarizer to some well known text
databases are presented, and we
compare these results to some
baseline summarization procedures.

1 Introduction

Text-Mining (TM) is a research field related to
Data-Mining (DM) (Weiss 98) which treats
basically free text with little or no semantic
information about the data. An important TM
task is summarization, which consists of
reducing the size of a text while preserving its
information content (Luhn 58), (Spark-Jones
99).

Summary construction is a complex task
and ideally requires deep natural language
processing capacities which are beyond the
abilit y of currently-known techniques (Mitra
97). In order to simplify the problem, current
research focus on extractive summaries, defined
as a subset of the sentences of the original text.
These summaries do not guarantee a good
narrative coherence, but are useful for relevance
judgement.

Typically, the summary is employed to
answer specific questions about the original text,
or is used as a pointer to some part of the
original document. Obviously a very important
advantage of using an extractive summary is its

reduced reading time. Automatic summary
generation has some advantages: (i) the size of
the summary can be controlled; (ii) its contents
is determinist; and (iii) the relation between a
sentence in the summary and the original text
block in is easily established.

In our work we address the automatic
summarization task. Published research work on
extractive-summary generation depends
basically on heuristics (Edmundson 69), (Kupiec
95); however, few indicatives are given of how
to select the relevant features. We wil l present a
summarization procedure which employs some
linguistic and statistical features, extracted
directly and automatically from the original text.

The rest of the paper is organized as follows:
section 2 describes the text summarization task;
section 3 presents the features employed in the
proposed algorithms; in section 4 we describe
the proposed trainable summarizer; section 5
presents the obtained computational results; and
finally, section 6 presents some conclusions and
future research work.

2 Text summarization: a review

According to Spark-Jones (Spark-Jones 99) a
summarization process can be separated in three
steps: (1) the preprocessing step, where a
structured representation of the original text is
generated; (2) the transformation of this
structure into a summary representation; and (3)
the generation of the summary from the
summary representation.

The preprocessing step aims to reduce the
dimensionali ty of the representation space, and
usually includes: (i) stop-word elimination –
common words which carry no semantics and do
not aggregate relevant information to the TM
task are eliminated; (ii) case folding: consists of
converting all the characters to the same kind of
letter case - either upper case or lower case; (iii)
stemming: syntactically-similar words, such as
plurals, verbal variations, etc. are considered
similar; the purpose of this procedure is to

obtain the stem or radix of each word, which
characterize its semantic.

A frequently employed text model is the
vectorial model (Salton 97). After the
preprocessing step each text element – typically
a sentence in the case of text summarization –
corresponds to an N-dimensional vector. In this
metric space an adequate metric can be easily
established: the most employed one is the cosine
measure, defined as cos • = (<x.y>) / (|x| . |y|)
for vectors x and y , and where (<,>) indicates
the scalar product, and |x| stands for the module
of x. Therefore maximum similarity is indicated
by cos • = 1, whereas cos • = 0 indicates total
discrepancy between the text elements.

A key point in summarization research is
how to evaluate the quality of the generated
summary. A detailed evaluation of summarizers
was made at the TIPSTER Text Summarization
Evaluation Conference (SUMMAC) (Mani 98a),
as part of an effort to standardize summarization
test procedures. In these tests summaries of the
reference database collection were provided by
human judges, allowing a direct comparison of
the performance of the systems that participated
in the conference. However, the human effort to
elaborate such summaries is huge. In the case of
summaries generated from different human
judges, there is low concordance: only 46 %
according to Mitra (Mitra 97); more
importantly: summaries produced by the same
human judge in different dates have only 55 %
of agreement (Rath 61).

If we consider the existence of a “reference
summary” the classical IR precision and recall
measures can be employed to evaluate the
quality of the automatically-generated summary:
a sentence will be called correct if it belongs to
the reference summary. As usual, precision is
the number of selected correct sentences divided
by the total number of sentences selected, and
recall is the ratio of the number of selected
correct sentences over the total number of
correct sentences. In the case of fixed length
summaries the two measures wil l be identical.

An intelligent solution which allows to
obtain the reference extractive summary was
proposed by Mani (Mani 98b): if each original
text contains an author-provided summary, the
corresponding size-K reference extractive
summary for this document consists of the K
most similar sentences to the author-provided
summary, according to the vectorial model. This
approach is adequate for automatic procedure,

and strongly facilit ate the generation of
reference extractive summaries.

Given a collection of documents and their
corresponding reference extractive summaries,
we can use a different class of algorithms:
trainable summarizers. A trainable summarizer
is a classical machine learning algorithm which
employs, as training set, examples
corresponding to the sentences of the documents
to be summarized and a set of features
describing those sentences. The trainable
summarizer performs a classification task, as
follows: each sentence of the training set is
labeled as “correct” if it belongs to the
extractive reference summary, or as “ incorrect”
otherwise; then the trainable summarizer is
expected to “ learn” the pattern which leads to
the summaries, by identifying relevant feature
values which are most correlated with the
classes “correct” or “ incorrect” ; when a new
document is given to the system, it uses the
learned patterns to classify each sentence of that
document into either a “correct” or “ incorrect”
sentence, therefore producing a new extractive
summary. Obviously a crucial issue in this
framework is how to obtain the relevant set of
features.

3 Feature identification for
trainable summarizers

In the literature of text-summarization we can
found a large number of features that can be
used to train a summarizer. These features can
be roughly divided into six groups, as follows:
(a) Sentence length. This feature can be used,
for instance, to penalize sentences that are too
short; very short sentences are not expected to
be selected for the summary. An example of this
use is found in (Kupiec 95), where it is defined
as a binary feature, whose boolean value
depends on whether or not the number of words
in a sentence is smaller than a given threshold.
(b) Sentence position. This feature can involve
the position of a sentence in the document as a
whole, the position of a sentence in a paragraph,
etc. This kind of feature presented good results
in several projects (Edmundson 69), (Kupiec
95), (Mani 98b), (Teufel 99). It should be noted
that in general these projects assumed that the
text was already segmented into paragraphs, so
that the position of a sentence in a paragraph, or
the presence of sections in the document (such

as “ Introduction”, “Conclusions”, etc.) can be
taken into account.
(c) Thematic features. We focus here on
thematic features based on information retrieval
techniques.

Since the seminal work of Luhn (Luhn 58),
research on summarization has often used
measures based on information retrieval
(Edmundson 69), (Kupiec 95), (Teufel 99).
Examples are the well -known measures of TF
(term frequency) and TF-IDF (term frequency ×
inverse document frequency) (Mani 98b).
TF(w,d), the term frequency of a word w in a
document d, is the number of occurrences of w
in d; IDF(w), the inverse document frequency of
a word w, is normally defined as log(|D|/DF(w)),
where |D| is the number of documents in the
document base and DF(w) is the number of
documents in which w occurs; the TF-IDF(w,d)
measure is the product of the TF(w,d) and
IDF(w) measures. The higher this product, the
more relevant word w is to document d, and the
higher the weight that w wil l have in a formula
used to measure the similarity between a query
and a document.

In text summarization our “unit of work” is a
single document, and we have to select a set of
relevant sentences to be included in the
summary out of all sentences in a given
document. Hence, the notion of document in
information retrieval can be replaced by the
notion of sentence in text summarization and
the “new” measure will be TF-ISF(w,s) (s used
for sentence) (Larocca 00).

In this work thematic words are obtained by
using trainable techniques, as discussed in
(Turney 00) and (Nevill -Maning 99).
(d) Text cohesion. The basic idea of this feature
is that sentences having a larger degree of
cohesion are more relevant to be selected for the
summary. A sentence’s degree of cohesion can
be measured in several ways, such as computing
the similarity of the sentence with every other
sentence of the document, computing the
similarity of the sentence with the document
centroid, etc. (Barzilay 97), (Carbonell 98),
(Mani 98b), (Mitra 97).
(e) Rethorical structure of a text. A complete
analysis of the rethorical structure of a text
would be too complex to be obtained, and it
would require a full understanding of the text.
However, some methods based on a superficial
understanding of the text have been used to
obtained good-quali ty summaries, as in (Teufel
99) and (Yaari 97).

(f) Text Morphology. Part-of-speech
algorithms, such as the one proposed by Bril l
(Brill 92), determine the part-of-speech (noun,
adjective, verb, etc.) of each word in a sentence.
Intuiti vely, this analysis can be useful for text
summarization, since there seems to be some
correlation between the part-of-speech
associated with some words and its relevance for
summarization purposes; some evidence for this
is presented by Carbonell (Carbonell 98).

4 Our proposal: a trainable
summarizer employing statistical
and linguistic features

Taking into account the kinds of features
identified in the previous section, we propose a
trainable summarizer. We use “statistics-
oriented” features and “ linguistics-oriented”
features - loosely speaking.

4.1 Employed features

We use the following “statistics-oriented”
features:
(a) Sentence Length. The normalized length of
the sentence, which is the ratio of the number of
words occurring in the sentence over the number
of words occurring in the longest sentence of the
document.
(b) Sentence Position. In our work we use the a
generic positional feature proposed by Nevill -
Manning (Nevill -Manning 99), whose value is
defined as the percentile of the sentence in the
entire document, which is normalized to take on
values between 0 and 1.
(c) Mean-TF-ISF. The mean value of the TF-
ISF measure for the words of the sentence.
Recall that each sentence is represented by a
vector of TF-ISF values, one value for each
word.
(d) Similarity to Title. This feature is obtained
by using the title of the document as a “query”
against all the sentences of the document. First
both the document title and each sentence of the
document are converted to their vectorial
representation; then the similarity between the
title and each sentence is computed by the
cosine similarity measure (Salton 97).
(e) Similarity to Keywords. This feature is
obtained in a way similar to the previous feature.
In this case, we calculate the similarity between
a vector of keywords and each sentence, using
the cosine vector-similarity measure.

(f) Sentence-to-Sentence Cohesion. For each
sentence s this feature is obtained as follows:
first, one computes the similarity between s and
each of the other sentences of the document;
then one adds up all those values of similarity,
obtaining the raw value of this feature for s; the
process is repeated for all sentences. The value
of this feature for a sentence s is normalized in
the range [0..1] by computing the ratio of the
raw feature value for s over the largest raw
feature value among all sentences in the
document. Sentences with feature values closer
to 1.0 have a larger degree of cohesion.
(g) Sentence-to-Centroid Cohesion. For each
sentence this feature is obtained as follows: first,
one computes the vector representing the
centroid of the document, the arithmetic average
over the corresponding coordinate values of all
the sentences of the document; then one
computes the similarity between each sentence
and the centroid, obtaining the raw value of this
feature for each sentence. The value is then
normalized producing a normalized value in the
range [0..1] for each sentence. Sentences with
feature values closer to 1.0 have a larger degree
of cohesion with respect to the centroid of the
document, and so are supposed to better
represent the basic ideas of the document.

Our trainable summarizer also use
“ linguistic-oriented” features. The five
following features contain information about the
argumentative structure of the text. First, the text
is processed by an agglomerative clustering
algorithm, as proposed by Yaari (Yaari 97). The
basic idea of this method is that similar text
segments are iteratively grouped together, in a
bottom-up fashion, based on their lexical
similarity, until the highest level of the
clustering scheme, the entire document. Once
the agglomerative-clustering tree has been
produced, five features are extracted, as follows:
(h) Depth in the tree. For a sentence s the value
of this feature is simply the depth of s in the
tree.
(i), (j), (k), (l) Four features referring to
position in a given level of the tree (position 1,
position 2, position 3, and position 4, for
short). In order to extract these features for a
given sentence s, we identify the path from the
root of the tree to the node containing s,
considering only the first four depth levels of the
tree. For each depth level, a feature is identified
as the direction to be taken in order to follow the
path to s; since the tree is binary, the possible
values for these features are: left, right and none,

the latter value means that the sentence is in a
tree node having a depth lower than four.

Other employed “ linguistic” features are:
(m) Indicator of main concepts. A binary
feature, indicating whether or not a sentence
captures the main concepts of the document.
The identification of these main “concepts”
assumes that the majority of relevant words is a
noun. Hence, for each sentence, all its nouns are
identified, by using a part-of-speech software
(Brill 92). This procedure is repeated for all
sentences. Then, for each noun, the system
computes the number of sentences in which that
noun occurs. The 15 nouns with largest
occurrence are selected as “main concepts” .
Finally, for each sentence the value of this
feature will be true if the sentence contains at
least one of those 15 nouns, and false otherwise.
(n) Occurrence of proper names. This is also a
binary feature, taking on the value true if the
sentence contains at least one proper name, and
false otherwise. The motivation for this feature
is that the occurrence of proper names of people
and places are clues that a sentence is relevant
for the summary, particularly for some kinds of
text. The detection of proper names was
performed by a part-of-speech software (Brill
92).
(o) Occurrence of anaphors. In general,
anaphors indicate the presence of non-essential
information in a text. The detection of anaphors
was performed in a way similar to the one
proposed by Strzalkowski (Strzalkowski 99).
The system determines whether or not certain
words, characterizing anaphors, occur in the first
six words of a sentence. This is also a binary
feature, taking on the value true if the sentence
contains at least one anaphor, and false
otherwise.
(p) Occurrence of other words indicating
non-essential information. Some other words
are considered indicators of non-essential
information. The words in question are speech
markers such as “because”, “ furthermore”, and
“additionally” , which typically occur in the
beginning of a sentence. This is also a binary
feature, taking on the value true if the sentence
contains at least one of these speech markers,
and false otherwise.

4.2 The framework for the trainable
summarizer

The trainable-summarization framework
consists of the following steps. First, we apply

some standard preprocessing information
retrieval methods to each document. The
methods in question are removal of stop words,
case folding and stemming. We have used the
stemming algorithm proposed by Porter (Porter
97). Next the sentences in the document are
converted to a vectorial representation (Salton
97).

After this basic preprocessing, the features
described in the previous subsection are
computed. Continuous features are discretized.
We did some preliminary experiments with two
kinds of discretization method, a simple class-
blind method and a class-driven method.
Surprisingly, in our preliminary experiments we
did not notice any significant difference in the
performance of the two discretization methods.
Hence, we decided to use the simple equal-
width method in our experiments.

Once all the features were duly computed
and discretized, the classification algorithm was
called and employed as usual in the data mining
literature, namely trained on a training set and
evaluated on a separate test set.

Of course, the framework assumes that each
document has an extractive summary, whose
sentences have the role of “positive class”
instances in classification / data mining
terminology. In our experiments each
document’s extractive summary was
automatically obtained by using an author-
provided non-extractive summary as in Mani
(Mani 98b).

5 Computational results

All the experiments were performed with
documents available in the TIPSTER document
base (Harman 94). The document collection
consist of texts published in magazines about
computers, hardware, software, etc., which have
sizes varying from 2 Kbytes to 64 Kbytes. We
have used in our experiments only documents
which already had a summary provided by the
own author of the document, in order to use the
above-mentioned technique of automatically
producing an extractive summary. The
TIPSTER document base contained 33,658
documents with the author’s manual summary.
A subset of these documents was randomly
selected for the experiments to be reported in
this section.

In our experiments with the trainable
summarizer, we have used two very well -known
classification algorithms, namely Naive Bayes

(Mitchell 97) and C4.5 (Quinlan 92). The former
is a Bayesian classifier that assumes that the
features are independent from each other.
Despite this unrealistic assumption, the method
presents good results in practice in many cases,
and it has been used in many text mining
projects. C4.5 is a decision-tree algorithm that is
often used for comparison purposes with other
classification algorithms, particularly in the data
mining and machine learning communities.

In total the experiments involved five text-
summarization methods, as follows:
(a) Our trainable summarizer using C4.5 as the
classifier.
(b) Our trainable summarizer using Naive Bayes
as the classifier.
(c) Random Summarizer. This method randomly
selects n sentences from the text, where n is
determined by the desired compression rate.
This system provides a very simple, weak
baseline for the performance of any text-
summarization method.
(d) First Sentences. This method selects the first
n sentences of the document, where n is
determined by the desired compression rate.
This system provides a simple, yet relatively
strong, baseline for the performance of any text-
summarization method Brandow (Brandow 94).
(e) Word Summarizer. Microsoft’s Word
Summarizer is a text summarizer which is part
of Microsoft Word, and it has been used for
comparison with other summarization methods
by several authors (Barzilay 97), (Marcu 99).
This method uses non-documented techniques to
perform an “almost extractive” summary from a
text, with a compression rate determined by the
user.

This method has a couple of characteristics
that are different from all the previous methods,
as follows. First, the compression rate specified
by the user refers to the number of characters to
be extracted, and not to the number of sentences.
Second, some sentences are somewhat modified
by Word Summarizer during its execution, in
order to reduce the sentence’s number of
characters without sacrificing its
comprehensibilit y. These characteristics
constituted a problem for our experiments, since
due to them a comparison between Word
Summarizer and the other methods is not
entirely fair: (i) due to the first characteristic, the
summaries produced by Word Summarizer can
contain a few more or a few less sentences than
the summaries produced by the other text-
summarization methods; (ii) due to the second

characteristic, in some cases it wil l not be
possible to compute an exact match between a
sentence selected by Word Summarizer and an
original sentence of the document; these cases
are rare, and the corresponding sentences were
ignored.

Note that only our proposal is a trainable
summarizer, the remaining three methods are
not trainable, and were used mainly as baselines
for comparison with the trainable methods.

The set of documents used in our first
experiment consisted of 200 documents,
partitioned into disjoints training and test sets
with 100 documents each. The training set
contained 25 documents of 11 Kbytes, 25
documents of 12 Kbytes, 25 documents of 16
Kbytes, and 25 documents of 31 Kbytes. The
average number of sentences per document is
129.5, since there are in total 12,950 sentences
in the training set. The test set contained 25
documents of 10 Kbytes, 25 documents of 13
Kbytes, 25 documents of 15 Kbytes, and 25
documents of 28 Kbytes. The average number of
sentences per document is 118.6, since there are
in total 11,860 sentences in the test set.

Table 1 reports the results obtained by the
five summarizers. The values of precision/recall
are expressed in terms of percentage (%). The
figures after the “±“ symbol are standard
deviations. The best results are shown in
boldface.

Let us now analyze the results reported in
Table 1. For all the five methods, the values of
precision and recall are significantly higher with
the compression rate of 20% than with the
compression rate of 10%. This result was
expected, since larger the compression rate, the
larger the number of sentences to be selected for
the summary, and so the larger the probability
that a sentence selected by a summarizer
matches with a sentence belonging to the
extractive summary.

For the compression rates of 10% and 20 %
the best results were obtained by our trainable
summarizer with Naive Bayes classifier.

We can also note that using the same
features, but with the C4.5 as classifier, the
obtained results were poor in comparison with
the First-Sentences and Word Summarizer
baselines.

Perhaps this result offers a useful lesson:
most projects on trainable summarizers focus on
the proposal of new features for classification,
using more and more elaborate statistics-based
or linguistics-based features, but they usually

use a single classifier in the experiments.
Normally “conventional” classifiers are used.
Our results suggest that researches should pay
more attention to the development of more
elaborate classifiers, tailored for text-
summarization applications, or at least choose
the best classifier among the conventional ones
already available.

Table 1: Results for documents with an
automatically-produced extractive summary

Compression
rate: 10%

Compression
rate: 20%

Precisi
on

Recall Precisi
on

Recall

Trainable-
S-C4.5

22.4 ±
1.48

22.4 ±
1.48

34.7 ±
1.01

34.6 ±
1.03

Trainable-
S-Bayes

40.5 ±±±±
1.99

40.5 ±±±±
1.99

51.4 ±±±±
1.47

51.4 ±±±±
1.47

Random-
Summ.

8.9 ±
0.94

 8.9 ±
0.94

19.6 ±
0.88

19.6 ±
0.88

First-
Sentences

23.9 ±
1.60

23.9 ±
1.60

32.0 ±
1.36

32.0 ±
1.36

Word-
Summ.

26.1 ±
1.21

34.4 ±
1.56

38.8 ±
1.14

43.7 ±
1.30

6 Conclusions and future research

In this paper we have explored the framework of
trainable text summarizers, which was proposed
a few years ago by Kupiec (Kupiec 95). Our
choice of this framework was motivated by the
fact that it allows us to measure the results of a
text summarization algorithm in an objective
way, similarly to the standard evaluation of
classification algorithms. This avoids the
diff icult problem of subjective evaluation of the
quality of a summary.

The main contribution of this paper is that it
performs a more extensive investigation of that
framework. We proposed a trainable
summarizer which employs statistics-oriented
and linguistics-oriented features, used with two
different classification algorithms, Naive Bayes
and C4.5. Hence, we were able to analyze the
performance of two different text-
summarization methods. The performance of
these methods was also compared with the
performance of three non-trainable, baseline
methods.

In general the trainable method using Naive
Bayes classifier significantly outperformed all
the three baseline methods.

The most interesting finding of our
experiments was that the choice of the classifier
(Naive Bayes versus C4.5) had severely
influenced the performance of the trainable
summarizer. In our future research we intend to
focus mainly on the development of a new or
extended classification algorithm tailored for
text summarization. In addition, experiments are
in hand to evaluate the performance of our
trainable summarizer in documents where an
extractive summary is directly provided by the
author, rather than being automatically
generated as in the experiments reported in this
paper.

References

(Barzilay 97) Barzilay, R. ; Elahad, M. Using
Lexical Chains for Text Summarization. In
Mani, I. e Maybury, M. T. (eds.). In
Proceedings of the ACL/EACL-97 Workshop on
Intelli gent Scalable Text Summarization,
Association of Computional Linguistics, 1997.

(Brandow 94) Brandow, R.; Mitze, K., Rau, L.
Automatic condensation of electronic
publications by sentence selection. Information
Processing and Management 31(5) , 675-685,
1994.

(Brill 92) Brill , E. A simple rule-based part-of-
speech tagger. In Proceedings of the Third
Conference on Applied Computational
Linguistics. Association for Computational
Linguistics, 1992.

(Carbonell 98) Carbonell, J. G.; Goldstein, J.
The use of MMR, diversity-based reranking for
reordering documents and producing summaries.
In Proceedings of SIGIR-98, 1998.

(Edmundson 69) Edmundson, H. P. New
methods in automatic extracting. Journal of the
Association for Computing Machinery 16
(2),264-285, 1969.

(Harman 94) Harman, D. Data Preparation. In
Merchant, R. (ed.). The Proceedings of the
TIPSTER Text Program Phase I. Morgan
Kaufmann Publishing Co., 1994.

(Kupiec 95) Kupiec, J. ; Pedersen, J. O.; Chen,
F. A trainable document summarizer. In
Proceedings of the 18th ACM-SIGIR
Conference, Association of Computing
Machinery, Special Interest Group Information
Retrieval, 68-73. 1995.

(Larocca 00) Larocca Neto, J.; Santos, A. D.;
Kaestner, C.A.; Freitas, A.A.. Document
clustering and text summarization. Proceedings
of 4th Int. Conf. Practical Applications of
Knowledge Discovery and Data Mining (PADD-
2000), 41-55, London: The Practical Application
Company, 2000.

(Luhn 58) Luhn, H. The automatic creation of
li terature abstracts. IBM Journal of Research
and Development 2(92), 159-165, 1958.

(Mani 98a) Mani, I.; House, D.; Klein, G.;
Hirschman, L.; Obrsl, L.; Firmin, T.;
Chrzanowski, M.; Sundheim, B. The TIPSTER
SUMMAC Text Summarization Evaluation.
MITRE Technical Report MTR 98W0000138.
The MITRE Corporation, Oct. 1998.

(Mani 98b) Mani, I.; Bloedorn, E. Machine
Learning of Generic and User-Focused
Summarization. In Proceedings of the Fifteenth
National Conference on AI (AAAI-98), 821-826,
1998.

(Marcu 99) Marcu, D. Discourse trees are good
indicators of importance in text. In I. Mani., I. ;
Maybury, M. (eds.). Advances in Automatic Text
Summarization, 123-136. The MIT Press, 1999.

(Mitchell 97) Mitchell, T. Machine Learning.
McGraw-Hill , 1997.

(Mitra 97) Mitra, M.; Singhal, A.; Buckley, C.
Automatic text summarization by paragraph
extraction. In Proceedings of the
ACL’97/EACL’97 Workshop on Intelligent
Scalable Text Summarization. Madrid, Spain,
1997.

(Nevil l-Manning 99) Nevill-Manning, C. G. ;
Witten, I. H. Paynter, G. W. et al. KEA:
Practical Automatic Keyphrase Extraction. ACM
DL 1999: 254-255, 1999.

(Porter 97) Porter, M.F. An algorithm for suff ix
stripping. Program 14, 130-137. 1980.
Reprinted in: Spark-Jones, K.; Wil let, P. (eds.)
Readings in Information Retrieval, 313-316.
Morgan Kaufmann, 1997.

(Quinlan 92) Quinlan, J. C4.5: Programs for
Machine Learning. Morgan Kaufmann, Sao
Mateo, CA, 1992.

(Rath 61) Rath, G. J. ; Resnick A. ; Savvage R.
The formation of abstracts by the selection of
sentences: Part 1: sentence selection by man and
machines. American Documentation 12 (2), 139-
141, 1961.

(Salton 97) Salton, G.; Buckley, C. Term-
weighting approaches in automatic text retrieval.
Information Processing and Management 24,
513-523. 1988. Reprinted in: Sparc-Jones, K.;
Willet, P. (eds.) Readings in Information
Retrieval, 323-328. Morgan Kaufmann, 1997.

(Spark-Jones 99) Spark-Jones, K. Automatic
summarizing: factors and directions. In Mani, I.;
Maybury, M. Advances in Automatic Text
Summarization, 1-12. The MIT Press, 1999.

(Strzalkowski 99) Strzalkowski , T.; Stein, G.;
Wang, J.; Wise, B. A Robust Practical Text
Summarizer. In Mani, I.; Maybury, M. (eds.),
Advances in Automatic Text Summarization.
The MIT Press, 1999.

(Teufel 99) Teufel, S.; Moens, M.
Argumentative classification of extracted
sentences as a first step towards flexible
abstracting. In Mani, I.; Maybury M. (eds.).
Advances in automatic text summarization, The
MIT Press, 1999.

(Turney 00) Turney, P.D. Learning algorithms
for keyphrase extraction. Information Retrieval,
2 (4), 2000.

(Weiss 98) Weiss, S.W.; Indurkhya, N.
Predictive Data Mining. Morgan Kaufmann,
1998.

(Yaari 97) Yaari, Y. Segmentation of Expository
Texts by Hierarchical Agglomerative Clustering.
Technical Report, Bar-Ilan University, Israel,
1997.

